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The paper considers the refraction of a plane shock wave at an interface between 
two streams of different Mach number. Particular attention is paid to the irregu- 
lar wave systems. It is found that when the interface is slow-fast, that is when the 
speed of sound a, in the first or incident wave medium is less than the speed of 
sound a, in the second or transmitted wave medium, then there are two irregular 
systems, one being a double Mach reflexion type and the other being a four-wave 
confluence type. There are also two irregular systems when the refraction is fast- 
slow ; these are a single Mach reflexion type and an expansion wave type. This 
last system has a central expansion wave when the flow is steady and a continu- 
ous band expansion wave when the flow is self-similar. Only two of the irregular 
wave systems have been observed experimentally in the fully developed state. 
Possible degeneracies are discussed. 

1. Introduction 
A shock wave propagating through a gas will be refracted if it encounters a 

change in the acoustic impedance in the gas. This may be due to a change in some 
property of the gas such as its temperature or composition. After refraction there 
will appear a transmitted wave which is always a shock, and a reflected wave 
which may be either a shock or an expansion wave. Experiments conducted by 
Jahn (1956) using a gas interface indicated that the observed wave patterns 
could be broadly classified into regular and irregular systems. A regular system 
includes those refractions in which all the waves lie along straight rays that 
emanate from a well-defined refraction point. Any system that does not have this 
property is considered to be irregular. An alternative classification which is often 
useful is based on differences in the speeds of sound in the gas or gases. Thus if 
the incident shock i is in a part of the gas where the speed of sound is a. and the 
transmitted shock t is in another part where it is a, then the refraction is called 
‘ slow-fast ’ if a, < a, and ‘fast-slow ’ if a, > a,. The nomenclature is illustrated 
in figure 1. 

The theory of regular refraction as devised by Polachek & Seeger (1951), 
Henderson (1966, 1967), and others, is multi-valued. The solutions may be con- 

-f Now on leave at Graduate School of Aerospace Engineering, Cornell University, 
Ithaca, N.Y. 

1 Presently, Postdoctoral Fellow at Institute for Aerospace Studies, University of 
Toronto, Toronto, Ontario, Canada. 

$ Defined here as pa. If pa of the medium changes then the shock will refract except 
perhaps for very restricted initial conditions. A more general definition has been given by 
Polachek & Seeger (1951). 
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veniently arranged as an ordered set in which the ordering is determined by the 
strength or pressure ratio across the transmitted shock. If the set is compared 
with Jahn’s data then it is found that it is always the weakest member that has 
appeared. This is also the minimum entropy solution. The theory of the irregular 

m ._ 

FIGURE 1. Refraction at  a Mach number and gas discontinuity: rnrn, interface; R, re- 
fraction point; i, incident shock; r, reflected shock; t ,  transmitted shock. 

wave systems is not so complete, but with the help of a simple mapping technique 
some qualitative deductions can be made about the structure of these systems, It 
is also possible to give precise quantitative conditions for the appearance of any 
particular type of system. The objective of the present paper is t o  discuss the 
refraction of a plane shock wave at  the interface between two streams of different 
Mach number. Special attention will be paid to the irregular phenomena in an 
attempt to refine and extend previous results. In  an earlier paper (Henderson 
1966) initial conditions were found for an irregular system of unknown form. The 
nature of this wave system is discussed here and it is shown to be a single Mach 
reflexion variety. The paper concludes with an atlas of wave refraction systems. 

2. Regular refraction 2.1. Analysis 

Using methods that were described in the earlier papers, numerical results were 
obtained from a computer for the regular refraction of a plane shock wave at  a 
Mach number interface. This consisted of two parallel streams of air having the 
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FIGURE 2.  Physically significant roots of the polynomial equation for the regular refraction 
of a plane shock a t  a Mach number discontinuity when MB < M,, -polynomial root line; 
S.L., sonic line; N.S., normal shock line. (a)  M ,  = 3.0, M B  = 1.5; ( b )  M ,  = 3.0, MB = 2.0; 
(c) Mo = 3.0, M B  = 2.5;  ( d )  Mo = 4.0, &!b = 3.9. 
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FIGURE 3. Physically signscant roots of the polynomial equation for the regular refraction 
of a plane shock a t  a Mach number discontinuity when M B  > M o ;  - , polynomial root line; 
S.L., sonic line; S.N., normal shock line. (a) M ,  = 2.0, MB = 2-025; ( 6 )  M,, = 3-0, 
M,= 5.0; (c) M,, = 4.0, MB zz  4.1; ( d )  M ,  = 4.0, MB = 4.3. 
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same stagnation enthalpy. Such an interface may be found when an initially 
homogeneous and adiabatic stream is subsequently required to follow different 
entropy paths in different parts of the field. Practical examples are found in the 
flow associated with multi-shock intakes, and in the refraction of shock waves in 
wing wakes. The following relation is then valid 
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FIGURE 4. Multiple root lines and other critical curves. Division indicates change from 
slow-fast M ,  > MB to fast-slow M s  < M,. (a)  M ,  = 2; ( b )  M ,  = 3;  (c) M ,  = 4; ( d )  
M ,  = 5. p ,  number of physically significant roots. 

The results for several Mach numbers are shown in figures 2-4. The graphs are of 
two types, one being a plot of the pressure ratio of the transmitted versus inci- 
dent shocks and the other being a, series of critical curves delineating boundaries 
between various regions of initial conditions. 
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The equations of regular refraction can also be solved graphically by construct- 
ing the hodograph diagram. This is a powerful method for investigating the physi- 
cal consequences of the numerical results. The procedure will be to suppose that 
the polar and/or characteristic for the reflected wave are initially coincident 
with the polar for the incident shock. The reflected wave maps are then gradually 
and continuously displaced until all solutions of physical interest cease to exist. 
This is physically equivalent to commencing with the incident shock as a Mach 
line and then slowly increasing its strength, causing at first a regular refraction 
to appear and then continuing the development until an irregular refraction 
appears in its place. In  this way a variety of phenomena can be arranged in an 
orderly sequence. 

2.2 .  Slow-fast interface 

To begin with it will be assumed that the incident shock i is in the M, stream and 
the refraction is initially slow-fast and further that M, < M, < J2. In these 
circumstances polar 11, defined by JIB = constant, is entirely contained or nested 
inside of polar I, M, = constant, figure 5. If the polar for the reflected shock 111, 
Ml = constant, is slightly displaced from I then the ordered set obtained is 
(al, a2). With continued displacement the two solutions eventually come into 
coincidence (a,  = a2) and with still further displacement they become unreal. 
The set of regular solutions is now empty (0) and from previous experience it is 
to be expected that the physical result will be that an irregular wave system 
appears in place of a regular one. The double solution is thus a boundary that 
separates regions of initial conditions corresponding to regular and irregular 
wave systems. Some numerical results are shown in figure 4. 

I I 

(al = a 2 )  0 so (6) 

FIGURE 5 (a)  and ( b ) .  For legend see p. 191. 
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FIGURE 5 .  Slow-fast sequence when polar I11 is displaced from polar I and polar I1 con- 
tained inside polar I. 

At higher Mach numbers polar I1 is found to intersect polar I. The intersection 
points A,,, may be found by the method given in the appendix and it is shown 
that for given Ho the minimum value of MB that will give intersections that have 
physical significance is given by 

MB min G H O ( M ~  - 1)". (2) 

In  particular there can be no real intersections unless No 2 4 2 .  Once A,,, do 
exist then polar I1 will lie partly outside of polar I ,  figure 6. Displacement now 
causes the ordered set to be (el, a,, az). The el solution is obtained by displacing 
the characteristic e, and represents a regular refraction with a reflected expansion 
wave e. With continued development el and a, approach A ,  until there is the 
coincidence D, = el G 01, = A,. The physical result is that the reflected wave 
degenerates to a Mach line for both el and a,. The degenerate set may be denoted 
(el a,, a,). With further development el ceases to  exist but the reflected wave 
of the a, solution strengthens and again becomes a shock (a,, a,). The set finally 
becomes empty (0) beyond the coincidence a, = a2. It may be assumed on the 
basis of previous experience and also on arguments presented in earlier papers 
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that it  is always the weakest member of the set that appears. This is subject to 
the provision that all downstream boundaries must be removed to infinity. It 

follows that the degeneracy (el = al, a,) is a limiting condition which separates a 
region of initial conditions where a regular refraction has a reflected expansion 
from one where the reflected wave is a shock. The condition is easily computed 

A1 

\ 
\ 

(€1 U l r  (12) 

FIGURE 6 (a) and ( b ) .  For legend see p. 194. 

from the equation given in the appendix and some results are shown in figure 4. 
Transitions in the ordered set such as 

A ,  
(€1, a,, %), (€1 = "1,%.2), @I, 4,  

(a1,aJ; (a1 = as); (01, 

which occur a t  a polar intersection point, have a different character from one such 
as 1 
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which occurs at no well-distinguished point. Physically the former is associated 
with a Mach line degeneracy of the reflected wave and the nature of this wave is 
different on either side of the transition. With the latter there is no degeneracy 
iLnd the reflected wave remains of finite strength and, moreover, the wave system 
is regular on one side of the transition and irregular on the other. If now the Mach 
numbers are further increased but the restriction M, > MB is still retained then 
differences appear in the irregular wave systems, figure 7; discussion of them is 
deferred to a later section. 

(all ((2) 

FIGURE 6 (c). For legend see p. 194. 

Ordered set Transition Remark 

(El, P 1 9  Pz, aa) 

(El, 4 

(El? 71, Yz ,  az) 

(a19 aa) A ,  

( € 1 7  a19 a,) 

(€1) 

( 0 )  Irregular wave system 

TABLE 1. Example of a sequence of ordered sets and their transitions 

- 
P1 f Pa 

- 
Y1 = Yz 

Y1 = Ye 

€1 2 a1 

a, = az - 

D, z V ,  Sonic point 

- 

Polar intersection point 

2.3. Fast-slow interface 

The refraction is fast-slow when M, < MB. The first sequence, figure 8, is for the 
condition M, < MB < 42 .  Polar I is nested inside polar I1 and this is the reciprocal 
case of figure 5. The set has only one member (el) and it is valid over the range of 

13 Fluid Mech. 32 
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initial conditions defined by the end points D, = D, and D, E V,. These corre- 
spond respectively to a Mach line degeneracy of i and a sonic degeneracy of e ,  
i.e. Ml = 1.  At higher Mach numbers the situation is more complicated and a 
typical sequence of sets with their transitions is given symbolically in table 1. 

/i Sonic line 

FIGURE 6. Slow-fast sequence when polar I11 is displaced from polar I, where intersections 
A,,  A ,  exist between polars I, I1 and where ord. < ord. Wl,2.  

Similar sequences have been discussed in earlier papers so the diagrams are 
omitted, but some numerical results are shown in figure 4. One effect of further 
increases in the Mach numbers Mo,B is to restrict the range of conditions for the 
appearance of the yl,z solutions and in fact they may become unreal if MR 
becomes large enough. Another effect is that the el solution ceases to exist and so 
for these reasons the sequence tends to become simpler as the Mach numbers 
increase still further. Differences also appear in the irregular wave system 
figure 9), and these will be discussed in the next section. 
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3. Irregular refraction 
3.1. Xlow-fast interface 

Consider again the slow-fast sequence shown in figure 5 and it is now desired to 
find out what happens when the ordered set becomes empty. In  the hodograph 
plane a gap is opened in the interior of polar I (Guderley 1947,1962; Kawamura & 
Saito 1956). Although the maps are very similar to ones that have been discussed 
in the earlier papers, the present discussion is aimed at  exploring the situation 
more deeply. Above the interface, t maps into the segment DIW,, where W, is one 
of the sonic points of polar 11. For this sequence, figure 5c, there are no physically 
significant intersections between polars I and I1 so following Guderley they are 
joined by a characteristic? which begins at  W,. The point E, requires the existence 
of a shock occurring at Che Mach number M,. This wave, which is labelled k, will 
in general be curved and it maps into the segment E, FD, on polar I; D, represents 
the strength of k at the confluence y,. Polar IV is erected at  D, and for simplicity 
it is constructed for the average Mach number (M,) downstream of k. If there is 
no intersection between polars I11 and IV then a Mach stem n will be present, 
figure 5c; in this case the entire wave system will be called a double Mach 
reflexion type. If the polars do intersect then the Mach stem will be absent and a 
four-wave confluence type of system will appear in its place as indicated in figure 
5d. The latter system has been photographed by Jahn at  a gas interface, and 
because hodograph maps for both the gas and the Mach number interfaces are 
qualitatively identical it  is concluded that the same type of wave system will 
appear at both interfaces. The transition illustrated in figure 5c,  is analogous to  
the Mach reflexion system at the outlet of an over-expanded nozzle changing into 
a four-wave system as the nozzle pressure ratio is increased. 

The hodograph diagram shows that the streamlines converge in the region 
W, E,  F .  This indicates that in the physical plane the primary refraction point 
W, = E ,  will be a point of infinite streamline curvature (see Guderley 1947; 
Sternberg 1959). The region is in the negative 6 half-plane which means that the 
local streamlines are deflected downwards. Further along the interface the 
streamlines approach the positive 6 half-plane and an inflexion G is induced in 
the physical plane. The expansion fan W, E, is oriented in the first family of charac- 
teristics and a Guderley patch is indicated for the physical plane. Its sonic line 
apparently terminates on the interface at, or near, G. In  the photographs taken 
by Jahn there was no sign of the region GBW, = E,F although in some photo- 
graphs the shock segment BW, was visible. This latter event only happened when 
a wall boundary was placed close to the interface. The shock t then consisted 
entirely of Bl% and terminated on the wall at  B (Henderson 1966). It is concluded 
that G is too close to the primary refraction point for the region to be detected 
except as a shock segment. 

t In  an earlier paper it was concluded that the appropriate characteristic to use was c1 
which is in the opposite family to c2. However, after amore detailed study it was decided that 
c2 was more physically satisfactory. There is little chance of deciding the matter by experi- 
ment because on the basis of Sternberg’s (1959) work it would be expected that the ex- 
pansion fans corresponding to c1,2 would be too small to detect. This means that there 
would be no visible effect on the wave system if the solutions were interchanged. 

14-2 
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If the free-stream Mach numbers Mo,B are now increased then eventually the 
polar intersections A1,, will appear. Initially they will be on the supersonic parts 
of the polars but this development does not affect the irregular wave system in 
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FIGURE 7. Slow-fast sequence when polar I11 is displaced from polar I where 
ord. Al,z >ord. Wl,z. 

any fundamental way. As MO,B increase still further Al, , approach the sonic points 
W1,, and then coincide with them A1,, = Wl,2. During this process E ,  is required 
to move towards the sonic point V, and this will cause polar I V  to shrink steadily. 
If initially a four wave confluence is present then it may be forced t o  split into a 
double Mach reflexion system. With a still further increase in Mo,B it  is found that 
ord. A1,, > ord. W1,, and A1,, will lie on the subsonic part of polar I1 (figure 7 ) .  
When Jahn photographed the wave system corresponding to this condition there 
was no sign of the shocks k,  j or n. Since the hodograph diagram indicates that they 
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should be present it can only be surmised that they are confined to the immediate 
vicinity of the refraction point. This may be called a geometric degeneracy in the 
sense where a line is shrunk into a point. It is possible however to force the wave 
n to appear. In  aprevious paper (Henderson 1966) it was found that the condition 
necessary to make n grow was that Sy > S,,,,. Such a condition can often be 
realized merely by increasing the strength of i ,  thus compare figures 7 a  and 7 b. 
There was still no sign of k and j  in Jahn's photographs but in principle it should 
be possible to find conditions that force them to grow. These waves will only dis- 
appear from the maps when Al,2 lie on the subsonic part of polar I but for the 
circumstances considered here this does not happen. 

3.2. Fast-slow interface 

Suppose now the refraction is fast-slow. The first sequence, figure 8, is for the 
condition where polar I is nested inside polar I1 ; this is the reciprocal condition 
of figure 5, and one has M, < MB < 42.  The irregular wave system appears as 

I 

p--.lzi 
- 

0 6" 6 

FIGURE 8 (a) and ( b ) .  For legend see page 198. 

soon as the set (el) becomes empty (0), that is as soon as D, is displaced beyond 
the sonic point V,. Jahn's photographs of the corresponding condition at  a gas 
interface showed that the el solution became irregular by the expansion fan 
broadening into a continuous band of expansion waves as shown in figure 8c. 
In  this case however the hodograph diagram shows that it is necessary to distin- 
guish between self-similar and steady-state solutions. Now Jahn obtained his 
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data from a shock tube where the flow was substantially self-similar and it is 
this solution that is mapped in figure 8c. But when the flow is steady it seems 
impossible to construct the same type of solution unless there is an undisturbed 

D2 - 
80 

Steady flow ( d )  

FIGURE 8. Faat-slow sequence when polar I1 is displaced from polar I. 
Polar I contained within polar 11. 

region of gas with suitably varying properties such as to give a similar Mach 
number distribution. If, however, the undisturbed region has uniform properties 
then the hodograph diagram shows that the expansion fan should be centred, as 
in figure 8d.  The flow downstream of i is now subsonic Ml < 1 and will depend on 
the nature of the disturbance causing i ;  8 finite wedge has been chosen for illus- 
tration (Henderson 1967). Guderley (1962) has discussed analogous flows in 
supersonic jets. 

At higher Mach numbers the intersections Al, again appear and initially these 
will be on the supersonic parts of the polars, ord. Al,z < ord. Vl,z, but this does 
not result in any basic change in the irregular systems. With a continuous Mach 
number increase, Al,2 eventually cross the sonic points so that ord.A,,, > 
ord. Wl,2 and they then lie on the subsonic part of polar I. There is now a basic 
change in the character of the hodograph diagram as may be seen in figure 9. 
In  this case the irregular system appears after the formation of the double root 
al = a2. The hodograph diagram shows that an extra shock is now present and 
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this may be interpreted as a Mach stem .n. The intersection of the polars I and I11 
means that a three-shock confluence y is also present. The irregular wave system 
is thus seen to have the nature of a single Mach reflexion (figure 9c) .  The flow in 
this example is supersonic downstream o f t  and subsonic downstream of n. As 
development continues D, --f V, and in the process y moves on to the supersonic 
parts of polars I and 111. This causes a Guderley patch to be present at the con- 
fluence (figure 9d) .  The initial conditions needed for the appearance of a single 
Mach reflexion system were noted in a previous paper (Henderson 1966) but no 
attempt was made to predict its structure. Jahn did not perform an experiment 
at the required initial conditions and to the best of our knowledge it has not yet 
been observed. 

Regular 

l t t l  

I Mach line. I 

degeneracies 
i,' , ', r ' 

Irregular 

Fully 
developed 

r $-wave Self-similar ' Single Mach 
confluence ej continuous reflexion d e n o n  

degeneracies Geometric A$ . 5 Tk ' k,J,  k, j r Guderley degenerate patch S.L. Steady state 
degenerate 

Slow-fast 
centred expansion e 

Fast-slow 

FIGURE 10. Atlas of wave refraction systems. 

4. Concluding remarks 
It seems well established that only two wave systems are possible when a shock 

wave undergoes regular refraction. These are distinguished by the nature of the 
reflected wave, being a shock in one case and an expansion in the other. Both 
types have been observed experimentally in both the slow-fast and fast-slow 
gas combinations. By contrast all the irregular wave systems are not found in 
both combinations. Thus for slow-fast gases the irregular wave systems are a 
double Mach reflexion type and a four-wave confluence type, but for fast-slow 
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gases the irregular systems are a single Mach reflexion type and an expansion 
wave type. In  this last system the expansion wave is centred when the flow is 
steady and a continuous band when the flow is self-similar. An atlas of wave 
systems is shown in figure 10. Experimentally the four-wave confluence system 
has been observed fully developed but the double Mach reflexion type has only 
been observed in one or other of two degenerate forms, namely with shocks n, k 
j absent or with shocks k, j absent. The single Mach reflexion system has not yet 
been observed in refraction, although it is of course well known in reflexion. The 
continuous band type has been observed fully developed but the centred wave 
type does not yet seem to have been observed. 

The hodograph diagrams for the Mach number interface do not appear t o  differ 
in any fundamental way from those of the gas interface and in this respect they 
are qualitatively identical. It is to be expected that if two wave systems are 
identical in this Sense in the hodograph plane then they will be identical in the 
same sense in the physical plane. It must be recognized that this does not exclude 
distortions and geometrical degeneracies so that two qualitatively identical wave 
systems can have a very different appearance. In  this respect we are talking of 
the topological properties of the wave system which are so deep seated that they 
persist under almost arbitrary continuous deformations of the system. 

Appendix : Determination of the free-stream polar interactions 
At the intersection points A,,2 of polars I and I1 one has: 

Put 

then from the shock polar equation (Henderson. 1966) one has: 

Therefore 

X 2 [ 2 ( b ~ -  bo) +do- - X [ b g  - bi -I- 2 ( b ~ d o  - bod,)] + bgdo- bid,, = 0 ;  

or, substituting and simplifying, 

Equation ( A 2 )  gives the ordinates of the polar intersection points A,,2. In  the 
special case when Al, coincide with the double point D, then x = 1 and equation 
(A 2 )  gives the result 
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